- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.
- Wilson, S. T., Lok, B. M., Messing, C. A., Cannan, T. R. & Flanigen, E. M. (1982). J. Am. Chem. Soc. 104, 1146-1147.

Acta Cryst. (1994). C50, 1540-1541

Di-µ-fluoro-bis[bis(N,N-dimethylformamide)trifluorozirconium(IV)]

WILLIAM ERRINGTON AND MATTHEW A. ISMAIL

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 17 March 1994; accepted 26 May 1994)

Abstract

The title compound, $[ZrF_3(C_3H_7NO)_2(\mu-F)]_2$, is a centrosymmetric fluorine-bridged dimer. The sevencoordinate Zr atoms are in a pentagonal bipyramidal environment with F atoms above and below the pentagonal plane. The average Zr—F bridging distance of 2.147 (4) Å is significantly longer than the mean terminal distance of 1.962 (4) Å.

Comment

The structure of the title compound (I) has been determined as part of a continuing study of ZrF_4 adducts (Alcock, Errington, Golby, Patterson & Wallbridge, 1994). The compound obtained by refluxing ZrF_4 with *N*,*N*dimethylformamide (dmf) has been reported (Muetterties, 1960) as a 1:1 adduct, but the material investigated in this work is clearly the 1:2 adduct (I).

The molecular structure is shown in Fig. 1. It consists of two pentagonal bipyramidal units linked via two F-atom bridges to give a centrosymmetric dimer. The equatorial ligand donor atoms are almost coplanar: F3 and O21 are 0.038 (5) and 0.056 (3) Å, respectively, above the plane of Zr1, F4, Zr1ⁱ and F4ⁱ, while O11 is 0.073 (5) Å below the plane. The axial F atoms, F1 and F2, are displaced 1.952 (4) Å from this plane. The mean length of the terminal Zr—F bonds is 1.962 (4) Å, while, as expected, the bridging Zr—F bonds are longer, averaging 2.147 (4) Å.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 1. View of the molecule showing the non-H-atom labelling.

Relatively few structures have been reported involving coordinated dmf, but in all cases it bonds through the O atom (Goggin, 1987). In the title compound, the Zr1-O21 and Zr1-O11 distances [2.227 (3) and 2.239 (4) Å, respectively] are similar to those reported for the $Zr_{--}O$ bond lengths [2.253(2) and 2.198(2)Å] in CpZrCl₃(dmf)₂ (Erker et al., 1990). Furthermore, the ligand bond lengths C11-N11 and C21-N21 of 1.298 (6) and 1.304 (5) Å, respectively, are indicative of some double-bond character, and agree with earlier results (Holt, Alcock, Sumner & Asplund, 1979; Erker et al., 1990). Two dmf ligands are located almost along the $Zr1 \cdot \cdot \cdot Zr1^{i}$ axis $[Zr^{i} \cdot \cdot \cdot Zr - O21 = 176.51 (8)^{\circ}]$, with the other pair at an angle of $103.65(12)^{\circ}$ to this axis. The coordination sites for the dmf ligands contrast with those reported previously (Alcock, Errington, Golby, Patterson & Wallbridge, 1994) for the analogous dimethyl sulfoxide complex $[ZrF_4(Me_2SO)_2]_2$, where the $Zr \cdot \cdot \cdot Zr - O$ angles are all about 103°.

Experimental

The complex was prepared by refluxing ZrF_4 in *N*,*N*-dimethylformamide (Muetterties, 1960) and allowed to crystallize upon cooling. The complex decomposes slowly in air and was, therefore, covered in a layer of Nujol prior to fixing onto a quartz fibre. Decomposition was further reduced by collecting the data with the crystal at 230 K under a stream of dry air.

Crystal data

$[ZrF_4(C_3H_7NO)_2]$	Mo $K\alpha$ radiation
$M_r = 313.41$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 18
Pī	reflections
a = 8.369 (8) Å	$\theta = 8 - 9^{\circ}$
b = 8.899 (7) Å	$\mu = 1.052 \text{ mm}^{-1}$
c = 9.501 (12) Å	T = 230 (2) K
$\alpha = 96.40 \ (8)^{\circ}$	Flat block
$\beta = 114.53 \ (9)^{\circ}$	$0.36 \times 0.09 \times 0.06 \text{ mm}$
$\gamma = 115.50 \ (6)^{\circ}$	Colourless
$V = 543.5 (10) \text{ Å}^3$	
Z = 2	
$D_x = 1.915 \text{ Mg m}^{-3}$	

Acta Crystallographica Section C ISSN 0108-2701 ©1994

Data collection

Siemens R3m diffractometer	$R_{\rm int} = 0.0487$
ω –2 θ scans	$\theta_{\rm max} = 25.05^{\circ}$
Absorption correction:	$h = -9 \rightarrow 1$
Analytical	$k = -9 \rightarrow 10$
$T_{\rm min} = 0.84, \ T_{\rm max} = 0.94$	$l = -10 \rightarrow 11$
2343 measured reflections	3 standard reflections
1921 independent reflections	monitored every 200
1778 observed reflections	reflections
$[I > 2\sigma(I)]$	intensity variation: none

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.0382$
$wR(F^2) = 0.1115$
S = 1.064
1920 reflections
146 parameters
Only coordinates of H atoms
refined, $U(H) \simeq 1.5 U_{eq}(C)$
$w = 1/[\sigma^2(F_o^2) + (0.0936P)^2]$
+ 0.1370P]
where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 1.37 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -1.19 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	x	v	z	U_{eq}
Zrl	0.05302 (5)	0.85504 (4)	0.90341 (4)	0.0201 (2)
F1	-0.1682 (4)	0.6443 (3)	0.8975 (3)	0.0368 (6)
F2	0.3113 (4)	1.0630 (3)	0.9512 (3)	0.0344 (6)
F3	-0.0915 (4)	0.8016 (4)	0.6637 (3)	0.0415 (7)
F4	0.1042 (4)	1.0057 (3)	1.1297 (3)	0.0299 (5)
011	0.2570 (4)	0.8117 (3)	1.1157 (3)	0.0257 (6)
021	0.1363 (5)	0.6832 (4)	0.7990 (4)	0.0322 (7)
N11	0.5499 (5)	0.9011 (4)	1.3536 (4)	0.0259 (7)
N21	0.2400 (5)	0.4946 (4)	0.7669 (4)	0.0269 (7)
C11	0.4448 (6)	0.9184 (5)	1.2175 (5)	0.0257 (8)
C12	0.7687 (6)	1.0330 (6)	1.4709 (6)	0.0339 (9)
C13	0.4536 (7)	0.7467 (6)	1.3958 (5)	0.0332 (10)
C21	0.1640 (6)	0.5614 (5)	0.8314 (5)	0.0266 (8)
C22	0.2734 (8)	0.3530 (6)	0.8080 (6)	0.0374 (10)
C23	0.3081 (8)	0.5649 (6)	0.6565 (6)	0.0413 (11)

Table 2. Selected geometric parameters (Å, °)

	0	1	
Zrl—Fl	1.962 (3)	011—C11	1.247 (6)
Zr1—F3	1.962 (4)	O21—C21	1.247 (5)
Zr1—F2	1.963 (4)	N11—C11	1.298 (6)
Zr1—F4 ⁱ	2.125 (3)	N11-C12	1.462 (6)
Zr1—F4	2.168 (4)	N11-C13	1.462 (5)
Zr1-021	2.227 (3)	N21-C21	1.304 (5)
Zr1-011	2.239 (4)	N21—C22	1.463 (5)
F4—Zrl ⁱ	2.125 (3)	N21—C23	1.467 (6)
F1Zr1F3	95.3 (2)	F2-Zr1-O21	88.25 (15)
F1—Zr1—F2	168.25 (11)	F4—Zr1—O11	71.44 (13)
F3F2	95.3 (2)	021—Zr1—011	73.23 (14)
F1Zr1F4	88.6 (2)	Zrl ⁱ —F4—Zrl	114.80 (13)
F2—Zr1—F4	86.3 (2)	C11-011-Zr1	126.4 (3)
F4 ⁱ —Zr1—F4	65.20(13)	C21-O21-Zr1	134.0 (3)
F1-Zr1-021	89.80 (14)	011—C11—N11	124.4 (4)
F3—Zr1—O21	73.93 (13)	O21—C21—N21	122.9 (4)
	Symmetry code: (i)	(-x, 2-y, 2-z)	

Data collection and cell refinement: Siemens R3m software. Data reduction: *SHELXTL-Plus* (Sheldrick, 1991). Program(s) used to solve structure: *SHELXTL-Plus*. Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1994). Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Alcock, N. W., Errington, W., Golby, S. L., Patterson, S. M. C. & Wallbridge, M. G. H. (1994). Acta Cryst. C50, 226–227.
- Erker, G., Sarter, C., Albrecht, M., Dehnicke, S., Kruger, C., Raabe, E., Schlund, R., Benn, R., Rufinska, A. & Mynott, R. (1990). J. Organomet. Chem. 382, 89-102.
- Goggin, P. L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 490–494. Oxford: Pergamon.
- Holt, E. M., Alcock, N. W., Sumner, R. H. & Asplund, R. O. (1979). Cryst. Struct. Commun. 8, 255–259.
- Muetterties, E. L. (1960). J. Am. Chem. Soc. 82, 1082-1087.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1994). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1541-1544

Pentaaquadioxouranium(VI) Triflate-18-Crown-6

LAURENT DESHAYES, NELLY KELLER, MONIQUE LANCE, MARTINE NIERLICH AND JULIEN-DANIEL VIGNER

CE Saclay, DRECAM, SCM, Bâtiment 125, 91191 Gif sur Yvette CEDEX, France

(Received 11 August 1993; accepted 7 February 1994)

Abstract

The uranyl ion in pentaaquadioxouranium(VI) bis-(trifluoromethanesulfonate)–1,4,7,10,13,16-hexaoxacyclooctadecane, $[UO_2(H_2O)_5](CF_3SO_3)_2.C_{12}H_{24}O_6$, is equatorially surrounded by five O atoms from water molecules. The $CF_3SO_3^-$ ions and the crown ether are not part of the uranyl coordination polyhedron but are linked to the U atom *via* hydrogen bonds.

Comment

As part of our studies of uranyl macrocyclic complexes, we have recently reported the structures of UO_2 -crown ether (Deshayes, Keller, Lance, Navaza, Nierlich & Vigner, 1994) and UO_2 -azacrown (Nierlich, Sabattie, Keller, Lance & Vigner, 1994) inclusion compounds obtained in organic solution.